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SUMMARY

The linear stability of incompressible flows is investigated on the basis of the finite element method. The
two-dimensional base flows computed numerically over a range of Reynolds numbers are perturbed with
three-dimensional disturbances. The three-dimensionality in the flow associated with the secondary
instability is identified precisely. First, by using linear stability theory and normal mode analysis, the
partial differential equations governing the evolution of perturbation are derived from the linearized
Navier–Stokes equation with slight compressibility. In terms of the mixed finite element discretization, in
which six-node quadratic Lagrange triangular elements with quadratic interpolation for velocities (P2)
and three-node linear Lagrange triangular elements for pressure (P1) are employed, a non-singular
generalized eigenproblem is formulated from these equations, whose solution gives the dispersion relation
between complex growth rate and wave number. Then, the stabilities of two cases, i.e. the lid-driven
cavity flow and flow past a circular cylinder, are examined. These studies determine accurately stability
curves to identify the critical Reynolds number and the critical wavelength of the neutral mode by means
of the Krylov subspace method and discuss the mechanism of instability. For the cavity flow, the
estimated critical results are Rec=920.27790.010 for the Reynolds number and kc=7.4090.02 for the
wave number. These results are in good agreement with the observation of Aidun et al. and are more
accurate than those by the finite difference method. This instability in the cavity is associated with
absolute instability [Huerre and Monkewitz, Annu. Re6. Fluid Mech., 22, 473–537 (1990)]. The Taylor–
Göertler-like vortices in the cavity are verified by means of the reconstruction of three-dimensional flows.
As for the flow past a circular cylinder, the primary instability result shows that the flow has only
two-dimensional characteristics at the onset of the von Kármán vortex street, when ReB49. The
estimated critical values of primary instability are Rec=46.38990.010 and Stc=0.126 for the Strouhal
number. These values are very close to the observation data [Williamson, J. Fluid Mech., 206, 579–627
(1989)] and other stability results [Morzynski and Thiele, Z. Agnew. Math. Mech., 71, T424–T428 (1991);
Jackson, J. Fluid Mech., 182, 23–45 (1987)]. This onset of vortex shedding is associated with the
symmetry-breaking bifurcation at the Hopf point. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The transition of fluid flow is a very complicated phenomenon that can be characterized only
by means of many parameters, in which the Reynolds number Re is the most important. The
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stability of parallel flows, such as plane Poiseuille flow and boundary layer flows, due to the
similarity of velocity profile in streamwise, can be described as a local stability governed by the
Orr–Sommerfeld equation, which is at least a fourth-order ordinary differential equation. The
neutral curve can be identified from the spatial modes or/and temporal modes by means of
calculating a generalized eigenproblem. The calculation of these eigenproblems is very com-
plex, even for the simplest canonical flows [2].

Numerical methods have been applied to theoretical studies of instability and transition to
turbulence since shortly after the advent of the digital computer. A rationally asymptotic
framework was developed for treating the globally linear and weakly non-linear stability of
non-parallel flows by means of the finite difference [4] and spectral methods [5]. Linear theory
is applicable to some transition problems, and it may describe the first stage of transition—the
(usually) slow growth of the primary instability. By means of three-dimensional disturbance
with primary instability waves, the secondary instability can also be analysed by a variety of
numerical methods.

Kleiser and Zang [6] have reviewed the discretization in space and time of the Navier–
Stokes equations by using the finite difference method, the spectral method, and/or the spectral
domain decomposition method. The precise choice of discretization in space is primarily
governed by efficiency and convenience. However, the numerical methods as stated above are
limited to quite simple geometries [7–9]. Even for finite difference methods, co-ordinates
transformation is necessary in order to simulate simple geometries [10,11]. In contrast, with the
finite element method (FEM), complex geometries can be described exactly and effectively. Li
and Kot [12], as the earlier researchers, analysed one-dimensional Poiseuille flow using the
FEM and Hermitian interpolation. Jackson [13] discussed in detail the onset of vortex
shedding in flow past variously shaped bodies using the Newton–Raphson iteration. Kawa-
hara and Ding [14] investigated the generic feature of bifurcation for a brown tide over a
natural ocean bay by using the FEM. These studies showed that the FEM has the advantage
of effectively obtaining the accurate result of stability analysis.

To determine the stability of an incompressible flow, the principle of linearized stability is
required. The linear stability problem can be treated as a generalized eigenproblem, in which
the leading eigenvalue with a maximum real part determines the stability of the base flow. By
choosing primitive variables (i.e. u/p variables), there are three aspects of numerical technical
difficulties associated with this generalized eigenproblem. First, the spectrum of this general-
ized eigenproblem is singular or defective due to the continuity constraint of incompressible
flow. Further detail regarding the eigenstructure for Stokes problem can be found in [15]. For
Re\0, the basic structure remains the same with the exception that, because of the unsymmet-
ric matrix, the eigenvalues are complex. Second, with respect to the existence and uniqueness
of the solution associated with the solution, independent of finite element size, the chosen finite
element subspace should satisfy the LBB condition (div–stability or Ladyzhenskaya–
Babuska–Brezzi or inf–sup condition) [15,16]. An unsuitable choice of element type will lead
to the spatial oscillation of pressure, although the dispersion relation of stability cannot be
affected significantly [17]. Last, in order to satisfy convergence, accuracy, and high resolution
of eigenvectors with steep gradients in complex geometry, a sufficiently large nodal number or
fine mesh is needed. Thus, an effective and economical numerical algorithm should be
developed to solve the unsymmetric large eigenproblem with finite elemental structure. To this
end, the Krylov subspace method [26,27] is employed in the calculation of the eigenproblem
contained in the stability problem of incompressible flow in which the linear fractional
transformation for spectrum is used.
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The purpose of this study is to analyse the linear stabilities of incompressible flows by
employing the mixed finite element method. Focus is on the two kinds of flows. The first case
is internal flow in a lid-driven cavity. Ramanan and Homsy [4] reviewed cavity flow from
experimental and numerical studies. The main conclusion can be summarized as the following
observation. It appears that the flow is most definitely two-dimensional when the Reynolds
number is less than 500. At some critical Reynolds number below 1000, there is a transition to
secondary state. Reliable experimental results have been shown by Aidun et al. [1] for this
range of Reynolds number. It is shown that the critical Reynolds number in cavity flow is in
the range 825–925, has the order O(103), the corresponding non-dimensional frequency in the
spanwise direction is approximately 0.1, i.e. O(10−1). The second case in this paper is the
external flow past a circular cylinder whose primary instability of steady state is examined.
Abundant literature can be found for the investigation of stability of flow past a circular
cylinder [10,11,13,18]. The basic knowledge for the primary instability is that the steady flow
with a pair of symmetric recirculation regions behind the cylinder is destabilized when ReB49,
the onset of vortex shedding will happen as one increases the Re number. An excellent
comprehensive review concerned with the vortex dynamics in the cylinder wake is given by
Williamson [18].

For this study, the base flows of lid-driven cavity and circular cylinder are two-dimensional,
which are computed by means of an improved velocity correction method by which the
constraint of continuity can be satisfied [19]. Then, focus is on the linear stabilities of flows in
a lid-driven cavity and past a circular cylinder in which the three-dimensional disturbances are
allowed for. The main assumption of this study is that the cavity and cylinder are of infinitely
axial extent, which allow for the eigenproblem to be decomposed into normal mode in the
spanwise direction. To overcome the singularity of the eigenproblem in the linear analysis of
incompressible flows [15], a slight compressibility is further employed to eliminate the
singularity. In addition, Khorrami et al. [8] stated that the singular effect on the desired
(physical) eigenvalues was negligible. In terms of the mixed finite element discretization, in
which six-node quadratic Lagrange triangular elements with quadratic interpolation for
velocities (P2) and three-node linear Lagrange triangular elements for pressure (P1) are
employed, the non-singular generalized eigenproblem is formulated from these equations
whose solution gives the dispersion relation between complex growth rate and wave number.
The stability results obtained from P2P1 elements are compared with those from P1P1 elements
[20] (see Figures 4 and 5). It is shown that, as in the simulation of incompressible flows with
the mixed finite element method, the spatial distribution of pressure disturbance can be
smoothed by using the P2P1 element; however, the choice of element type does not have a
significant influence on the stability results. As for the stability of cavity flow, the critical
results are Rec=920.27790.010 for the Reynolds number and kc=7.4090.02 for the wave
number. These results are much closer to the observation [1] than those from the finite
difference method with a three-dimensional potential formulation [4]. In addition, the three-di-
mensional cavity flow structure is reconstructed by means of normal mode for the critical flow
(see Figures 10–12). It shows that the Taylor–Göertler-like vortices in cavity exist in the
spanwise direction and are similar to the numerical results [21]. With respect to the instability
of flow past a circular cylinder, the obtained critical values of primary instability are
Rec=46.38990.010 for Reynolds number and Stc=0.126 for Strouhal number. These results
are in good agreement with the experimental data by Williamson [3] and other results by
stability analysis [10,13]. The stability analysis shows that the primary instability in the cylinder
wake is intrinsically two-dimensional.
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The remainder of the paper is organized as follows. Section 2 describes the mathematical
formulations, including the linearized Navier–Stokes equations with a slight compressibility.
In Section 3, the numerical method for the simulation of steady flow and effective eigenspec-
trum solver are discussed. In Section 4, the numerical results of linear stability are presented
for two cases and the reconstructed three-dimensionally critical flow patterns. The instability
mechanism for cavity flow and circular cylinder flow is also discussed. Section 5 concludes this
paper.

2. MATHEMATICAL FORMULATIONS

There are two different methods to derive the mathematical formulations of the stability
analysis for incompressible fluid flows. One is to form a non-singular eigenproblem by defining
two potential functions in three-dimensional space [4,15]. Therefore, in general, definite
potential functions are adopted to force the velocity field to be solenoidal, and automatically
satisfy the continuity equation [22]. But it should be pointed out that with potential formula-
tions, it is plausible to specify boundary conditions for the potential functions. In addition, it
will result in a coupled set of fourth-order partial differential equations for the potentials when
using the finite difference method reported in [4]. Therefore, if using the finite element
discretization, a Hermitian interpolation function is needed for the discretization of those
equations, at least it implies that the total degree of freedom would increase by twice the total
nodal number. Thus, it is inconvenient and time-consuming to solve this kind of linear
algebraic equations derived from the FEM.

Another way is to write the governing equations in primitive variables in order to utilize
Lagrangian interpolation functions in finite elemental space. It will keep the linear algebraic
system within an appropriate memory size. In this study, the latter method is adopted, i.e. u/p
variables, to form a discretized system of the FEM, with slight compressibility so as to
eliminate the singularity in the eigenproblem.

2.1. Formulations

Considering three-dimensional flows in a lid-driven cavity and past a circular cylinder that
are infinitely long in the spanwise direction, in which the scale of velocity V0 is defined as the
top boundary moving velocity in cavity or the uniform inflow velocity for flow past a circular
cylinder. The length scale L is defined as the width or height of the cavity or the diameter of
the circular cylinder. Assume that the fluid is slightly compressible, isothermal, and Newto-
nian. In addition, the non-dimensional scales for time, density, and kinematic pressure are
L/V0, r0 and CV0, where C is acoustic speed of fluid. The dimensionless form of continuity for
a Newtonian fluid flow is

Dr

Dt
+r9 ·v=0 in V, (1)

where D/Dt is mass differentiation with respect to dimensionless time, r and v denote the
non-dimensional density and velocity vector respectively. By introducing a slight compressibil-
ity, given that pressure is only a function of density, you get

Dp
Dr

=
1

rMa
Dr

Dt
, (2)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 451–479 (1999)
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where Ma=V0/C denotes the Mach number in the fluid. Substituting (2) into (1), the modified
continuity equation with a slightly compressible assumption can be written as follows:

Dp
Dt

+
1

Ma
9 ·v=0 in V. (3)

To derive the equation of motion, consider the constitutive relation of a Newtonian fluid with
Stokes’s hypothesis [23], for which the stress tensor T is

T= −
1

Ma
pI+

2
Re

�
S−

1
3

I9 ·v
�

, (4)

where I is the identity matrix, Re=V0L/n indicates the Reynolds number in a flow in which
n is the kinematic viscosity, and the rate-of-strain tensor S is

S=
1
2

[9v+ (9v)T]. (5)

Under the condition of slight compressibility, considering n of fluid a constant and f a constant
body force (e.g. gravitation), the non-dimensional momentum equation can be written as

Dv
Dt

= −
1

Ma
9p+

1
Re

�
92v+

1
3

9(9 ·v)
n

+ f in V, (6)

provided G=GN@GS, in which GS denotes the Dirichlet boundaries and GN the Neumann
boundaries. No-slip conditions are imposed on all wall boundaries. The boundary conditions

u=1 and 6=0 on GS (7)

are specified on the top of the cavity or the uniform inflow of the circular cylinder. The
Neumann condition on the top of the cavity or the outflow boundary is

T ·n= t. on GN, (8)

where n denotes the boundary normal unit vector, and t. indicates a specified value on the
boundary. In practical cases, the value of t. is set to zero for the two cases considered.

2.2. Base flow

As the cavity or circular cylinder are assumed as infinitely long in the spanwise direction, the
base flow whose stability is being examined is two-dimensional and steady, with the result that
the equations for this flow simplify to

9 ·V=0 in V, (9)

V ·9�V= −9�P+
1

Re
9�2 V in V, (10)

where V and P are the velocity and kinematic pressure in the base flow respectively. 9�
represents the two-dimensional gradient operator.

2.3. Perturbation equations

To investigate the stability of the base flow to disturbances, equations that govern the
evolution of these perturbations are required. To this end, the base flow is perturbed by a
disturbance velocity v% and the kinematic pressure by p %. The total velocity and pressure are
then written as
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v=V+v% and p=P+p %. (11)

Substituting these into the continuity equation (3) and the equation of motion (6), subtracting
the base flow equations (9) and (10) and linearizing, the following equations for the perturba-
tion pressure and velocity subject to no-slip conditions on the Dirichlet boundaries are
obtained.

p % equation

Dp %
Dt

+ (v% ·9)P+
1

Ma
9 ·v%=0 in V, (12)

v% equations

Dv%
Dt

+ (v% ·9)V= −
1

Ma
9p %+

1
Re

�
92v%+

1
3

9(9 ·v%)
n

in V, (13)

where the two-dimensional operator is

D
Dt

=
(

(t
+ (V ·9�).

The boundary conditions of the disturbances are

v%=0 on GS, (14)�
−

1
Ma

p %I+
2

Re
�

S%−
1
3

I9 ·v%
��

·n=0 on GN, (15)

where S%=1
2[9v%+ (9v%)T]. In terms of the normal mode, the disturbances of pressure and

velocities in the symmetry plane and spanwise direction of flow are presented as

p %= ip̂(x, y) exp(ikz+vt), (16)

u %= iû(x, y) exp(ikz+vt), (17)

6%= i6̂(x, y) exp(ikz+vt), (18)

w %=ŵ(x, y) exp(ikz+vt) (19)

respectively, where i is the imaginary unit, k is the spanwise wave number and v=vr+ ivi

denotes the complex growth rate. One of the reasons for the choice of the imaginary amplitude
in normal modes is to avoid complex arithmetic in the following calculation of the eigenprob-
lem. The assumed form of the eigenvector is completely general and allows for both steady and
oscillatory modes, depending on whether the eigenvalue v is real or complex respectively.
According to linear stability theory, if v is real, the disturbances either grow or decay
monotonically, the critical Reynolds number is that for which v=0. If v is complex, the
neutral condition is vr=0, and the onset of instability is oscillatory with dimensionless wave
speed vi. This normal mode form also includes time-dependent two-dimensional instability of
the steady flow for which k=0. Substituting these normal modes into (12) and (13), one can
present an eigenproblem with the growth rate being the eigenvalue

vp̂+ (V ·9�)p̂+ (v̂ ·9�)P+Ma−1(9� · v̂+kŵ)=0, (20)
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vû+ (V ·9�)û+ (v ·9�)U+Ma−1 (p̂
(x

=Re−1�(9�2 −k2)û+
1
3
(

(x
(9� · v̂+kŵ)

n
, (21)

v6̂+ (V ·9�)6̂+ (v̂ ·9�)V+Ma−1 (p̂
(y

=Re−1�(9�2 −k2)6̂+
1
3
(

(y
(9� · v̂+kŵ)

n
, (22)

vŵ+ (V ·9�)ŵ−Ma−1kp̂=Re−1�(9�2 −k2)ŵ−
1
3

k(9� · v̂+kŵ)
n

, (23)

subject to the no-slip boundary conditions

û= 6̂=ŵ=0 on GS, (24)

the stress condition for û and 6̂ is�
−

1
Ma

p̂I*+
1

Re
�
9v̂+

1
3

I*(9� · v̂+kŵ)
��

·n=0 on GN, (25)

where I* denotes the two-dimensional identity matrix, and the Neumann condition for ŵ is

9ŵ ·n=0 on G. (26)

Thus, the boundary conditions are consistent with those in the simulation of base flows.
Meanwhile, Equations (20)–(23) can be rewritten in the compact form, i.e.

vf. =L(V, P, k)f. , (27)

where f. ={û, 6̂, ŵ, p̂}T, L is the linear operator including the convection, pressure gradient,
viscosity and compressibility terms. Because the eigenvector f. depends on the two-dimensional
space, the full three-dimensional stability problem at any fixed Re number can be reduced to
a one-parameter family of two-dimensional stability problems.

2.4. Finite element formulations

As for the discretization of (20)–(23) by means of the mixed finite element method, the
mixed interpolations for velocity and pressure eigenfunctions can be expressed as

v̂=Fa v̂a

p̂=Clp̂l

(a=1, 2, . . . , 6),
(l=1, 2, 3),

where Fa is the quadratic interpolation function for velocities in a six-node triangular element,
Cl is the linear interpolation for pressure in a three-node triangular element, and v̂a and p̂l

represent the nodal values at the ath node of the finite elements. The corresponding weighting
functions are similar to the above. After the superposition of the element matrices, the
temporal mode of stability is expressed as the generalized eigenproblem in the following form:

AF=vBF, (28)

where A, B and F denote the discretized matrix of the linear operator L, the assembling
consistent mass matrix and the discretized eigenfunction f. respectively. If N is the number of
total nodal points, and Nb is the total degrees of freedom on all no-slip boundaries for
perturbed velocities. The dimensions of the square matrices A and B can be reduced to
3(N−Nb) through column operations. It follows that the ranks of A and B are 3(N−Nb).
Furthermore, by employing Arnoldi’s method [26,27] as the spectrum solver, it is unnecessary
to execute the column operation for matrices A and B, as only linear algebraic equations are
needed when solving by means of this kind of subspace iteration method. The Neumann
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conditions for perturbation pressure are included implicitly in the finite elemental eigenvalue
equation (28).

3. NUMERICAL METHODS

In this section, the numerical methods are described to compute the base flows in a cavity and
past a circular cylinder and solve the corresponding eigenproblems for the identification of the
critical state flows.

Figure 1. Two-dimensional steady flow in lid-driven cavity at Re=900. (a) Streamlines (streamfunctions cmax=
1.080×10−3, cmin= −0.116); (b) isobars (Pmax=0.717, Pmin= −0.120).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 451–479 (1999)
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Figure 2. Two-dimensional steady flow past a circular cylinder at Re=40. (a) Streamlines; (b) isobars (Pmax=0.278,
Pmin= −0.366).

3.1. Base flow simulation

The evaluation of the two-dimensional base flows are performed by using the improved
velocity correction method with constraint of continuity by means of the FEM [19]. These
kinds of methods, based on the fractional step scheme, have been investigated widely, see Kim
and Moin [21] for the finite difference method, Jiang and Kawahara [24] and Hawken et al.
[25] for the FEM. The results from various numerical methods for simulation of two-dimen-
sional cavity flow and flow past a circular cylinder have good accuracy in comparison with
experimental data for lower or moderate Re numbers. After the convergence tests for the grid
size, it was found that for cavity flow, at the lower Reynolds numbers (i.e. below Re=300) a
33×33 grid is adequate for obtaining grid invariant results, but for the higher Reynolds
numbers, the finer 81×81 mesh is necessary. For the flow past a circular cylinder, a fine mesh
with 9870 nodal points and 12800 triangular elements for velocities was used to obtain a
grid-independent result at ReB50. Details of the solution methodology on a related problem
have been reported elsewhere [19]. Figure 1 shows the two-dimensional flow structure in cavity
at Re=900, which consists of a primary vortex, secondary vortices at the bottom corners, and
an incipient vortex in the upper left-hand corner in Figure 1(a). The steady distribution of
pressure at this Reynolds number is shown in Figure 1(b). Figure 2 represents the steady flow
past a circular cylinder at Re=40 in which symmetric recirculations exist behind the cylinder.

3.2. Solution of eigenproblem

In the generalized eigenproblem (28), the eigenvalue set of the real unsymmetric matrix
contains real values and complex conjugate pairs. To detect the onset of instability, one needs

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 451–479 (1999)
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to identify those that possess eigenvalues closest to the imaginary axis. The leading or
dominant eigenvalue that is sought is that with the maximum real part. In this section, a linear
fractional transformation (LFT) is discussed briefly within the Arnoldi method. One can find
that by means of the purified Arnoldi method, only the eigenvalues with a large module can
be obtained [26,27]. In order to search for the dominant eigenvalues with a large real part, in
which at least the leading eigenvalue with a maximum real part is involved, it is necessary and
convenient to use some simple eigenspectrum transformation technique to transform the
spectrum into the desired one [28]. In this study, an LFT is applied to the generalized
eigenproblem (28), i.e.

v=
t−1
t+1

, (29)

which maps the v spectrum into a t spectrum in which the eigenvalues of v are transformed
into a unit circle. For the ill-conditioned eigenproblem (28), if the real part of the eigenvalue
is finite, the following mapping of spectra exists,

(v r, vi)
(v r, +�)
(v r, −�)

(0−, v i)

U (t r, ti)
(−1, 0+)
(−1, 0−)� 2

1+v i
2−1,

2vi

1+v i
2

�.

It follows that if vi is not so large, the leading eigenvalue (0−, vi) will be transformed into the
right-half plane of the t spectrum close to the unit circle. Thus, it becomes convenient for
Arnoldi’s method to detect the dominant set of eigenvalues.

From the LFT, a transformed eigenproblem of (28) is obtained in which the outer part of
the t spectrum is desirable, i.e.

− (A+B)F=t(A−B)F. (30)

To apply it to the standard Arnoldi’s method, considering the following equivalent relation,
i.e.

(A−B)−1(A+B)I+2(A−B)−1B, (31)

where I is the identity matrix, only the following linear algebraic equations need to be solved

(A−B)wj=B6j. (32)

So an LU decomposition of (A−B) with partial pivoting once in the Arnoldi iteration can be
performed, and solve it by back substitution. For further discussion about the incomplete LU
factorization, see Elman [29,30]. He showed that the stabilized methods for non-self-adjoint
matrix is much more robust than standard incomplete factorizations. The detailed performance
of this transformation was discussed by Ding and Kawahara [17].

4. NUMERICAL RESULTS

In this section, the results for the lid-driven cavity flow and the flow past a circular cylinder
are presented. As mentioned above, the base flows were computed as a discrete sequence and
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used for stability analysis. Since the computed fluid is water, in the computation of eigenprob-
lem, this fluid was considered with a physical compressibility in which the acoustic speed was
chosen as 1449.35 m s−1 in correspondence with the general situation of the fluid at
temperature 10.0°C. Therefore, the range of Mach numbers is from 4.5×10−7 to 1.4×10−5.
It means that the slightly compressible assumption is based on physical characteristics in these
cases, rather than on the choice of an artificial compressible parameter, such as that in [7,8].

4.1. Case 1—ca6ity flow for Re=0�1050

4.1.1. Con6ergence tests. The correctness of the eigenspectrum obtained from Arnoldi’s
method by employing a P1P1 element has been investigated in [31]. It was found that if one
specifies the criterion of convergence, such as the residual norm is less than 10−10 and only the

Figure 3. Convergence test for three kinds of meshes (i.e. 21×21, 41×41 and 81×81) (a) Maximum growth rate; (b)
wave speed.
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Figure 4. Comparison of stability results from P2P1 and P1P1 elements for Re=930. (a) Maximum growth rate; (b)
wave speed.

first three dominant eigenvalues are needed, the adequate number of Arnoldi’s iteration m will
be no more than 30. In order to obtain a more accurate eigenspectrum, the value of m is
chosen as 60 in all cases of the following computation.

To search for the grid-convergent eigenspectrum for calculation of eigenvalues, due to the
memory limitation at computer, grid convergence tests on non-uniform grids (21×21, 41×41
and 81×81) were performed on the basis of P1P1 elements. Figure 3 represents the compari-
son of the dispersion relation for Re=1000 by employing the three kinds of meshes described
above. It was found that the grid size has an important impact on the convergence of
maximum growth rate (i.e. maximum real part) in Figure 3(a), but little influence on the wave
speed (i.e. the imaginary part of the leading eigenvalue) in Figure 3(b). It follows that the
convergent eigenvalues are obtained by increasing the grid size. In order to find an accurate
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eigensolution, a non-uniform mesh (81×81) is chosen in the following stability analysis of
cavity flows.

Further, the results from the P2P1 and P1P1 elements are compared in Figure 4 for the
maximum growth rate (a) and the corresponding wave speed (b), in which an 81×81 mesh is
used for velocities and the marks represent the numerically computational points. Figure 4
shows that for unstable flow (Re=930) near the critical flow, the dispersion relation curves are
very close to that obtained in the equal-order interpolation method. Also investigated were
lower and higher Reynolds numbers, and it was found that the difference between the two
elements was negligible.

Next, the distribution of the pressure eigenvector is compared in Figure 5. This figure shows
the real eigenvectors of pressure associated with the leading eigenvalue for Re=600 with

Figure 5. Distribution of real pressure eigenvectors from two kinds of elements for Re=600 with k=6. (a) P1P1; (b)
P2P1.
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Figure 6. Comparison of real part vs. wave number for Re=200.

Figure 7. Comparison of imaginary part vs. wave number for Re=200.

k=6. The spatial oscillation of pressure is very pronounced for the result with P1P1 elements
(Figure 5(a)), however, the mixed finite element with P2P1 element remedies the ‘wig-waging’
distribution of pressure to be the same as for the situation in the simulation of incompressible
flow with the mixed finite element method. Therefore, it can be concluded that, for both P1P1

and P2P1 elements, a convergent eigenspectrum can be obtained, and with the mixed finite
element method, the spatial distribution of pressure eigenvector can be smooth. This is the
reason that the feature of P1P1 element does not satisfy the LBB condition, and attention to
the LBB condition should be paid in the calculation of the eigenproblem [16].

4.1.2. Validation of stability results. In order to validate the stability result, the present
results by employing meshes 21×21 and 81×81 are compared with those of Ramanan and
Homsy [4] in which a 31×31 grid with nine point stencil was employed by means of the finite
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difference method, and the spectra of cavity flows were determined by means of the simulta-
neous iteration method [32]. The comparison of maximum real and corresponding imaginary
parts for Re=200 is shown in Figures 6 and 7, respectively. It indicates that the stability
curves from the FEM are very close to that obtained with the finite difference method at the
lower Reynolds number. It can be seen that the stability results using slight compressibility
have good accuracy despite the coarse 21×21 grids. However, the non-uniform mesh 81×81
is employed in the following section in order to sustain the high resolution of eigenspectrum
in cavity flow. It was found that the agreement between the two numerically discrete methods
only happens over the range of lower Reynolds number (below Re=400). The significant
difference between the two methods occurs at high Reynolds numbers. This difference at the
critical flow will be presented in the following section.

Figure 8. Growth rate wave speed vs. wave number for Reynolds numbers close to critical state. (a) Maximum growth
rate; (b) wave speed.
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Figure 9. Illustration of dispersion relation in complex plane.

Table I. Iterative procedure of Rec for cavity flow

R1 D1 R2 D2 Recn �DR � k

920.00001 9.65320×10−5 930.0000 1.70859×10−3 920.5348 0.5348 7.490.2
920.0000 9.65320×10−5 920.5348 7.52795×10−52 920.3005 0.2343 7.490.2

3 920.0000 9.65320×10−5 920.3005 1.81862×10−5 920.2529 0.0476 7.490.05
920.2529 3.87112×10−64 920.3005 1.81862×10−5 920.2513 0.0084 7.4090.05
920.2613 1.87770×10−6 920.3005 1.81862×10−55 920.2650 0.0037 7.4090.05

5 920.2650 7.53774×10−7 920.3005 1.81862×10−5 920.2664 0.0014 7.4090.02
920.2770 3.28154×10−6 920.2770 0.01066 7.4090.02

Figure 8 shows the principal results vr(k, Re) for the maximum real parts (growth rate) and
the corresponding imaginary part (wave speed) of the leading eigenvalue. Over the range of
Reynolds numbers close to the critical state, the discrete increment of wave number Dk is as
small as 0.2. Therefore, the smooth dispersion relation curve close to the critical flow can be
drawn. The growth rate in Figure 8 shows that the critical situation belongs to the Hopf mode,
which is very close to Re=930 with k=7.5. It is indicated that the k=7.5 mode crosses the
imaginary axis first followed sequentially by the k=7 mode at a slightly higher Reynolds
number. It was not found that the lower wave number mode (stationary) crosses the imaginary
axis in the discrete sequence of these cavity flows as reported in [4].

4.1.3. Detection of critical Reynolds number Rec. To detect exactly the critical Reynolds
number, the general iterative methodology with linear interpolation is proposed. It is assumed
that: if the critical flow with the real part vr=0 exists, find a subcritical flow with the
Reynolds number R1 and a supercritical flow with R2 close to the real axis in a complex plane
as illustrated in Figure 9 for R2\R1, seek the (n+1)th approximated critical Reynolds
number Rec by means of the following linear interpolation, i.e.

RC
n+1¬

D1
nR2

n+D2
nR1

n

D1
n+D2

n . (33)
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The iteration procedure for the detection of the critical Reynolds number is shown in Table I.
The critical parameters including the leading eigenvalue vc, the critical wave number kc, and
the non-dimensional frequency fc are listed in Table II. For both P2P1 and P1P1 elements, the
results are very close to each other. However, the Rec from P1P1 is close to the upper critical
Reynolds number, but that from P2P1 is approximate to the average value of Rec in the
observation [1]. Under the meaning of average, it can be said that the result from P2P1 element
is more accurate than that from P1P1 element. In addition, the results from the FEM are much
closer to observation than those from the finite difference method [4], in which the short
wavelength mode (Hopf mode with k=6) at a Re close to 700 was reported. From Table II,
the critical wavelength is 0.898 close to unit cavity width. The present result can also be
compared with the numerical one in [21]. The same conclusion as described above can be
shown.

4.1.4. Reconstruction of three-dimensional flow. In order to reproduce the three-dimensional
flow field that corresponds to the critical mode, the total three-dimensional flow field is
reconstructed on the basis of the two-dimensional steady flow with an arbitrary number of the
disturbance eigenvectors. If considering the conjugate pairs of eigenspectrum, the real three-di-
mensional flows are reconstructed by means of the following superposition of eigenvectors (the
general vector of pressure and velocity 6 are the same as that of u)

u=U−2 %
Nt

n=1

exp(v r
nt cos(kz)[û i

n cos(v i
nt)+ û r

n sin(v i
nt)]), (34)

w=2 %
Nt

n=1

exp(v r
nt cos(kz)[ŵ r

n cos(v i
nt)−ŵ i

n sin(v i
nt)]), (35)

where the subscripts r and i denote the real and imaginary parts of eigenvalue or eigenvector
respectively. By introducing four pairs of eigenvectors in the critical mode, including the

Table II. Critical parameters of cavity flow

Element Rec vc kc fc

P2P1 920.277090.0100 3.2815×10−69 i4.9525×10−1 0.07887.4090.02
0.0789P1P1 7.4090.05925.924990.0005 1.3679×10−79 i4.9570×10−1

Observation [1] $0.10825�925

Figure 10. A schematic demonstration of the time periodic vortex for three-dimensional cavity flow.
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Figure 11. Evolution of velocity fields on y–z plane at x=L/2 for Rec with kc; wmax=3.073×10−2, wmin=
−3.279×10−2; 6max=3.499×10−2, 6min= −2.220×10−2.

leading pair, the description on the reconstructed flow pattern is summed up, a schematic
diagram of this three-dimensional structure is depicted in Figure 10. It appears that in the
temporal mode, spiral-shaped vortices superimpose on the primary and the downstream
second eddies (DSE) travelling from the symmetry plane outward in the spanwise direction.
The disturbance structure near the critical mode is more visible on the DSE rather than the
primary vortex. The motion of these vortices is similar to the rotation of a spring around its
axis. These results have been proved in the experiment of Aidun et al. [1].

To verify the existence of Taylor–Göertler-like vortices (TGL) in the spanwise plane, which
were described frequently in the numerically simulation [21,33,34] and experiment of Aidun et
al. [1], we present the development of the spanwise velocity fields at the symmetry plane for the
critical mode in Figure 11. The spanwise fields consist of mushroom-like structures travelling
from the symmetry plane outward in the spanwise direction. Due to the maximum order of the
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spanwise velocity close to O(10−2), TGL vortices in cavity flow are very weak. Similar
structures were shown in those observed in flow visualization of Aidun et al. [1]. It is easy to
show that a cellular structure has a dimensionless wavelength of p/4 (Kim and Moin [21]
showed numerically two pairs of TGL vortices per cavity width at Re=1000). As the ordered
cellular structure is crumbled, the transient to turbulence in cavity flow occurs. The contours
of the normal vorticity vx in the spanwise are represented temporally in Figure 12. The result
of vx shows that the spanwise motion of the vortex is very weak in the critical flow.

4.2. Case 2— flow past a circular cylinder for ReB50

The aim of this case is to quantify a primary step in the sequence of instabilities leading to
turbulence in the wake of a circular cylinder. Specifically, results from a global stability

Figure 12. Evolution of normal vorticity vx on y–z plane at x=L/2 for Rec with kc; (vx min
= −1.080, vx max

=
1.082).
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Figure 13. Dispersion relation of flows past a circular cylinder. (a) Maximum growth rate; (b) wave speed.

analysis of two-dimensional steady flows as described above are presented and the primarily
linear instability leading to the von Kármán vortex street is identified precisely. The flow
considered is an infinitely long circular cylinder placed perpendicular to an otherwise uniform
open flow. The sole parameter, i.e. Re number, is defined on the basis of the free-stream
velocity V0 and the cylinder diameter L. For the shedding frequency f, the non-dimensional
parameter, i.e. the Strouhal number St, is defined as

St
fL
V0


vi

2p
, (36)

where vi is the imaginary part of the leading Hopf mode in the generalized eigenspectrum.
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4.2.1. Dispersion relations. The base flows as shown in Figure 2 are perturbed with
three-dimensional disturbances, the principal results of vr(k, Re) and the corresponding
Strouhal number versus wave number for different Re are depicted in Figure 13(a) and (b).
Apparently, the primary instability occurs near Re$46, and the onset of vortex shedding for
the primary instability is two-dimensional in which the wave number k near the critical state
is equal to zero. This kind of two-dimensionality was reported in Williamson’s review [18] and
other stability results [10,13].

4.2.2. Detection of Hopf bifurcation point. To determine precisely the critical parameters of
the primary instability for flow past a circular cylinder, the linearly iterative calculation as
described in Section 4.1.3 was carried out. The iteration procedure for the detection of the
critical flow is shown in Table III. After five iterations, the absolute error �DR � of Rec can
be limited to no more than 0.01, the exact critical parameters, i.e. the critical Reynolds
number Rec and Strouhal number Stc, are obtained. The critical eigenmode obtained is a Hopf
one as its maximum growth rate is very close to zero (actually, at the real Hopf bifurcation
point, the eigenproblem is singular, so only an approximate numerical point can be detected
[4,13]).

The comparison of the critical parameters with experimental data [3,35], time-dependent
simulation [36], and other linear stability analysis results [10,13] are shown in Table IV. The
present result of the critical state, i.e. Rec=46.38990.010 and Stc=0.126, is in good
agreement with other results of this critical flow past a circular cylinder [10,13]. The maximum
growth rate versus Re is presented in Figure 14(a). In particular, for the critical Stc,
convergence tests have been carried out versus Re in Figure 14(a), and the accurate Stc could
be obtained at Arnoldi’s iteration number m=150, for which the residual norm o was
1.0×10−15 (see Table V). However, the approximated real part of the leading eigenvalue has
almost three digits of accuracy, and the Stc has almost five digits of accuracy at m=60. This
means that the convergent eigenvalue could be detected when the iteration number m is no
more than 60 for the primary instability of the circular cylinder flow. Further, the comparison

Table III. Iterative procedure of Rec for flows past a circular cylinder

�DR � kRecn D2R1 D1 R2

46.76521 46.0000 1.98528×10−3 50.0000 8.39302×10−3 0.0
0.376146.3891 0.02 1.91946×10−346.0000 1.98538×10−4 46.7652
0.0351 0.03 46.3891 1.97295×10−4 46.7652 1.91946×10−3 46.4242

0.00.020846.40344 2.87781×10−446.3891 1.97295×10−4 46.4242
2.80503×10−4 46.3953 0.00905 46.3891 0.01.97295×10−4 46.4034

Table IV. Comparison of critical parameters

Grid sizeMethodStc kcLiterature Rec

3056FEM with Newton–Raphson methodJackson [13] 45.403 0.13626 0.0
0.0 FDM with Newton–Raphson methodMorzynski [10] 46.270 0.13451 3200

Experiment0.1220Williamson [3] 47.90
0.12 ExperimentBerger [35] 50.00

Two-dimensional simulation by FEM 1852Gresho [36] 50.00 0.14
0.12619 0.0 FEM with Arnoldi’s methodThis paper 987046.389
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Figure 14. The maximum growth rate and the Strouhal number for the circular cylinder flow. (a) Maximum growth
rate vs. Re ; (b) Strouhal number vs. Re.

Table V. Convergence of the leading eigenvalue in the circular cylinder flow
for Rec

No. mvr Stc o

1 2.8050270D-04 1.2518878D-01 5.8726178D-05 60
2 2.7990421D-04 1001.2618908D-01 1.4998004D-11

1503 2.7990421D-04 1.2618909D-01 7.1128622D-16

of the Stc with experimental data [3] and other results from two-dimensional instability
analysis [10,37] is shown in Figure 14(b). The present Stc is close to the averaged value of those
results.
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In order to search for a self-organized structure in the onset of the primary instability, the
vectors for the eigenfunction of û and 6̂ are plotted in Figure 15(a) for the real part and in (b)
for the imaginary part. It shows, apparently, that the instability of the external flow, such as
the flow past a circular cylinder, belongs to the con6ecti6e instability class [2], since the

Figure 15. Eigenfunctions of velocities and perturbed normal vorticities. (a) Real part of eigenfunction; (b) imaginary
part of eigenfunction; (c) perturbed vorticity v̂zr; (d) Perturbed vorticity v̂zi.
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Figure 16. Distribution of the energy e for Re=50 at (a) t=0.0 and (b) t=T/2.

Figure 17. Energy variation on the rear centreline of the flow for Re=50.
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Figure 18. Snapshots of the instantaneous streamline and normal vorticity vz, at intervals of 1
8 the period of

oscillation, for a flow at Re slightly greater than Rec. (a) Instantaneous streamlines; (b) vorticity vz.
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Figure 18 (Continued)
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amplitude of the velocity increases along the streamwise direction. Further, a perturbation of
the normal vorticity v %z is defined as

v %z=vz−Vz, (37)

where Vz denotes the normal vorticity of steady state, then

v %z= i
1
2
�(6̂
(x

−
(û
(y
�

exp(vt)= (−v̂zi+ iv̂zr) exp(vt). (38)

The perturbed vorticities v̂zr and v̂zi are depicted in Figure 15(c) and (d), where the saddle-like
vorticity distribution is bifurcated in the streamwise direction. Moreover, the perturbed
vortices are shed alternatively behind the circular cylinder, and the sign of the saddle-like
vorticity is also changed alternately in Figure 15(c) and (d). From these figures, because of the
existence of symmetry in the perturbation part of the wake past the circular cylinder, its
destabilization in the primary transition of cylinder flow will lead to the onset of the von
Kármán vortex street. Then, the intrinsically self-organized structure of vortex shedding will
occur.

The instability of flow past a circular cylinder belongs to the con6ecti6e instability class as
discussed in the review of Hurre and Monkewitz [2]. To understand the mechanism of
instability, the spatio-temporal variation of the disturbance energy e (i.e. turbulence energy) for
the wake of the circular cylinder flow at Re slightly greater than the Rec obtained above is
investigated. This energy is defined as

e=
1
2

(u %2+6%2+w %2). (39)

The spatio-temporal variations of the energy e for Re=50 at time t=0.0 and T/2 are plotted
in Figure 16(a) and (b). These figures show that the high energy area is limited within the wake
of the flow, and transmitted downstream. In addition, the spatial distribution of the energy is
symmetric in the wake for low Reynolds number. Further, the energy variations on the rear
centreline of the flow for Re=50 are depicted in Figure 17. The energy increases over the
distance x=0.5�10L, and decays from the distance x=10L, where L is the diameter of the
circular cylinder. At the same time, the disturbance is travelling downstream. This phe-
nomenon has been expressed as con6ecti6e instability [2].

4.2.3. Reconstruction of 6ortex shedding for critical flow. The superposition of spectra for
Re=50, as described in (42) and (43), is used to reconstruct the vortex shedding. Figure 18
shows a sequence at intervals of 1

8 of a period of oscillation of ‘snapshots’ of the instantaneous
streamfunction in (a) and the normal vorticity vz in (b) derived from the velocities u and 6.
This figures reproduces completely the vortex shedding for supercritical flow, such as the
Re=50.

5. CONCLUSIONS

In this study, the linear stability of incompressible fluid flows in lid-driven cavity and past a
circular cylinder were investigated by using the mixed finite element method under the
assumption of slight compressibility forced in the Navier–Stokes equations. From the ob-
tained results, the conclusions are as follows:
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(1) By means of the P2P1 triangular element, the spatial oscillation of pressure is avoidable.
Moreover, the difference of stability results from P2P1 and P1P1 elements is negligible.
Therefore, for the stability analysis of incompressible flow, the mixed finite element is
numerically more elegant.

(2) It is reasonable to use compressibility based on physical meaning to reduce the
singularity in the generalized eigenproblem that occurs in the linear stability of incompressible
fluid flow.

(3) Arnoldi’s method with linear fractional transformation is very effective to detect the
dominant parts of eigenvalues. In addition, the difficulty of ill-conditioned eigenproblems can
be overcome effectively, while maintaining higher accuracy of the eigenvector.

For the instability analysis of lid-driven cavity flow, our conclusions are:
(4) The estimated critical results in the case are 920.27790.010 for the Reynolds number

and 7.4090.02 for the wave number in which the non-dimensional frequency is 0.0788. These
results are in agreement with the observation of Aidun et al. [1] and are more accurate than
those of finite difference. This instability in the cavity is associated with absolute instability [2].

(5) Through the reconstruction of flows in the critical mode, the three-dimensionality in
cavity flow is apparent. By means of investigation of the instability mechanism, these results
show that the TGL vortices play a key role in generating three-dimensional flow patterns in
the cavity.

For the primary instability analysis of flow past a circular cylinder, the conclusions are:
(6) The accurate critical values of primary instability are Rec=46.38990.010 and Stc=

0.126. These values are very close to the observation data [3] and other stability results [10,13].
(7) It is verified that the primary onset of the Kármán vortex street is two-dimensional. The

primary instability at the Hopf bifurcation point is connected with the symmetry-breaking
bifurcation of spectra. The further study about the three-dimensionality of the secondary
instability over Re=150�200 using the FEM can be referred to [38].

(8) By means of the discussion of the spatio-temporal variation of the disturbance energy
for the supercritical flow, the existence of the con6ecti6e instability in external flows, such as
circular cylinder flow, is verified.

Finally, based on the efficiency of this analysis method and the incorporation of physical
compressibility in the disturbance equations in these cases, the present method can also be used
for the stability analysis of compressible fluid flows.
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